
Proceedings of the 3rd International Workshop
on Distributed Statistical Computing (DSC 2003)

March 20–22, Vienna, Austria
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

K. Hornik & F. Leisch (eds.) ISSN 1609-395X

Exploratory Visual Analysis of Graphs in

GGobi

Deborah F. Swayne ∗ Andreas Buja †

Duncan Temple Lang ‡

Abstract

Graphs have long been of interest in telecommunications and social net-
work analysis, and they are now receiving increasing attention from statisti-
cians working in other areas, particularly in biostatistics. Most of the visu-
alization software available for working with graphs has come from outside
statistics and has not included the kind of interaction that statisticians have
come to expect. At the same time, most of the exploratory visualization soft-
ware available to statisticians has made no provision for the special structure
of graphs.

Graphics software for the exploratory visual analysis of graph data should
include the following: graph layout methods; a variety of displays and meth-
ods for exploring variables on both nodes and edges, including methods that
allow these covariate displays to be linked to the network view; methods for
thinning or otherwise trimming a large graph. In addition, the power of the
visualization software is greater if it can be smoothly linked to an extensible
and interactive statistics environment.

In this paper, we will describe how these goals have been addressed in
GGobi through its data format, architecture, graphical user interface design,
and its relationship to the R software (Ihaka and Gentleman, 1996).

∗AT&T Labs – Research
†The Wharton School, University of Pennsylvania
‡Lucent Bell Laboratories

Proceedings of DSC 2003 2

1 Introduction

A graph consists of nodes and edges; the edges connect pairs of nodes. In social
network analysis, the nodes frequently represent people or institutions; the edges
represent interactions such as conversations or trading relationships. The graphs
encountered in telecommunications are similar: the nodes typically represent tele-
phone numbers or IP (Internet Protocol) addresses; the edges capture telephone
calls or exchanges of packets.

For a data analyst studying graph data, the description of the graph is often
only part of the story, because the nodes and the edges may each correspond to
multivariate data. For example, if the graph captures a set of telephone numbers
and telephone calls, we may have demographic data or usage data about the bill-
payer for each telephone number, and we may also know the time and duration of
phone calls. We therefore observe variables on nodes and on edges.

How do exploratory data analysts approach such data? First, we need to visual-
ize the graph, that is, to lay it out by using node positions that have been calculated
to help us interpret the graph structure. This is not a well-defined objective, but
often the distance between nodes in the layout should reflect their distance from
one another according to some distance metric on the graph. Another guideline
is that minimizing edge crossings usually makes a graph more readable by cutting
down on clutter. Still, there is no “best” layout method, or even a best layout for
a particular graph: for example, one layout may clarify a graph’s overall structure
while deemphasizing local structure, while in another layout, a local region of in-
terest may be clearly drawn but the overall structure looks like spaghetti. Graph
layout in an interactive context, then, should offer several layout algorithms and a
lot of interaction methods for tuning and exploration.

The layout algorithms should be fast enough to be used in real time. For exam-
ple, we might draw only straight-line edges, and we might not sacrifice any time to
choose the perfect position for node labels. The suite of layout algorithms should
include methods for laying out graphs in 3D (or higher-D), which we can rotate to
shift our viewpoint and focus on local structure.

Other important interaction methods include the following:

• We should be able to tune the layout by moving nodes interactively.

• We should be able to pan and zoom the display of the graph.

• We should have a variety of ways to thin or subset the graph by eliminating
or collapsing nodes and edges. At times, we may not want to eliminate nodes,
but to find ways to highlight nodes and edges of interest while “downlighting”
the rest. In that way, we retain context as we focus on a subset of interest.

So far, we have considered only the structure of the graph, ignoring the multi-
variate data associated with the nodes and edges. Once the layout is displayed, one
wants to explore the data together with the graph, to investigate the relationships
between the variables and the shape of the graph. The use of linked views, by now
a standard feature of interactive data visualization software, is well suited to this

Proceedings of DSC 2003 3

goal. The graph view can be linked to displays of multivariate data on both nodes
and edges.

These additional views can be used to highlight, label or paint nodes and edges
in the graph view according to variable values, so that we can explore the distribu-
tion of data values in the graph (see Fig. 2). Equally, we can highlight data in the
covariate views. For example, we might want to thin the graph according to covari-
ate values. In the case of telephone calls, we could erase the edges corresponding
to the shortest calls, and then erase all the nodes that no longer have edges.

Finally, this software will be more powerful and more extensible if it can be
programmed using some scripting language, and if it is connected to a software
system for data analysis that includes a library of standard graph algorithms.

Graph drawing is an active research area in computer science with a long history
(Battista et al., 1994). The layouts produced are highly tuned and often beautiful.
Since they are not produced within the context of data analysis, the graphics are
typically not interactive, and the programmers have not adopted the linked views
approach. Some tools (e.g. Pajek (Batagelj and Mrvar, 1998)) offer a library
of graph algorithms in addition to layout, and some can even be extended with
plugins (e.g. Tulip, www.tulip-software.org). Still, the designers clearly do not
have exploratory data analysis (EDA) in mind.

Within the field of statistics, graph visualization has not gotten very much at-
tention. A notable exception is the work of Wills (1999), which has never been
released to the public. Even the social network analysis community, which com-
bines an interest in graph drawing with an interest in multivariate data analysis,
has not to our knowledge produced tools which combine both sets of visualization
capabilities. We therefore feel that there exists a gap in current software offerings
for the exploration of graph data. GGobi is our attempt to fill this gap.

This paper is structured as follows. Section 2 introduces GGobi, the software
which will be discussed in the rest of the paper. Section 3 describes GGobi’s methods
for graph layout. Section 4 describes some of GGobi’s methods for manipulating
displays, especially graph views. Section 5 explains how GGobi can be embedded
in other software, and what this design offers for graph data analysis. Section 6
describes the data format that is used to specify relationships between nodes and
edges, graph elements and variables. We use a real telecommunications dataset for
illustration throughout the paper. The meaning of its variables has been masked
to protect the privacy of the customers.

2 GGobi

GGobi (Swayne et al. (2003 (to appear)) is general-purpose multivariate data visu-
alization software, designed to support EDA. GGobi displays include scatterplots,
scatterplot matrices, barcharts, time series plots, and parallel coordinate plots. All
displays can be linked for color and glyph brushing as well as for point and edge
labeling. GGobi is known for its powerful projection facilities for high-dimensional
rotations. Among GGobi’s many other manipulations are panning and zooming,
subsampling, and interactive moving of points and groups of points in data space.

Proceedings of DSC 2003 4

GGobi can be easily extended, either by being embedded in other software or
by the addition of plugins; either way, it can be controlled using an Application
Programming Interface (API). An illustration of its extensibility is that it can be
embedded in R.

GGobi is a direct descendent of a data visualization system called XGobi (Swayne
et al., 1998) that has been in use since the early 1990’s. XGobi supported the spec-
ification and display of graphs, but it did not include any graph layout methods.
Graph data was an afterthought with XGobi, while it was a consideration in the
GGobi design process from the beginning.

GGobi supports a plain ASCII format involving multiple input files (as in XGobi)
for the simplest data specifications, but an XML (Extensible Markup Language) file
format has to be used for anything richer, and graphs are an example. The format
is briefly described in Section 6.

3 Graph layout

We have used GGobi’s plugin mechanism to add graph layout. Because this is
specialized software, it is convenient that this functionality can be optional. There
are two plugins available for GGobi that can be used for laying out graphs.

3.1 The graph layout plugin

The simplest plugin is called GraphLayout. It includes three layout methods, two
of which rely on the library included with GraphViz (Gansner and North, 2000), a
freely available collection of tools for manipulating graph structures and generating
graph layouts. All three methods work by generating a new dataset on the fly and
making it available through the GGobi interface, so scatterplots of the new position
variables can be displayed, and edges added to them.

The three layout methods are:
Radial: The radial layout (Wills, 1999) places a designated node at the center,

and arranges the rest of the nodes in concentric circles around it. The resulting
layout is a tree arranged radially, with any extra edges added. If the underlying
graph is not very tree-like, the layout can result in a great many edge crossings, and
the layout doesn’t do anything to minimize these crossings. In addition to the two
position variables, the method generates a few other variables, such as the number
of steps between node j and the center.

Dot: “Dot” produces hierarchical layouts of directed graphs in 2D; the other
layout methods ignore edge direction. It first finds an optimal rank assignment
for each node, then sets the vertex order within ranks, and finally finds optimal
coordinates for the nodes.

Neato: The “neato” layout algorithm produces “spring” model layouts of undi-
rected graphs. In spring models, the graph is modelled as a set of objects connected
by springs, assuming both attractive and repulsive forces, and an iterative solver is
used to find a low-energy configuration. Only the positions at the final configura-
tion are returned by the algorithm. Neato is the most general-purpose method of

Proceedings of DSC 2003 5

Figure 1: These two displays show layouts of the snetwork.xml data generated by the GraphViz
layout methods. On the left is a 2-D “neato” layout; on the right a “dot” layout.

the three. Further, neato can generate layouts in spaces from 2D to 10D, and edge
weights can be used to further tune the layout.

The first layout method is illustrated in Fig. 2; the latter two are illustrated in
Fig. 1.

There is a manual for the plugin which describes its use in more detail. The
dot and neato layout methods are described in the GraphViz documentation, which
can be found on www.research.att.com/sw/tools/graphviz/refs.html. The
GraphViz software can be obtained from www.graphviz.org.

3.2 The ggvis plugin: multidimensional scaling

The “ggvis” plugin is a reimplementation of XGVis (Buja and Swayne, 2002), a
multidimensional scaling (MDS) tool which is part of the XGobi software. MDS
is a method for visualizing data where objects are characterized by dissimilarity
values for all pairs of objects. It interprets these dissimilarities as distances and
constructs maps in Rk. It was originally developed as a data analysis method in
the social sciences, but it is also used to lay out graphs.

Like neato, ggvis computes layouts through iterative optimization, but unlike
neato, the display is redrawn at each iteration, so we can watch the layout take
shape. We can also intervene during the optimization process, by moving points
interactively when they are trapped in local minima, or by adjusting parameters of
the MDS objective function.

GGVis puts a large number of parameters under interactive user control. As a

Proceedings of DSC 2003 6

consequence, ggvis layouts are highly tunable. One of the most useful ggvis param-
eters is the exponent of a power transformation of the target distances; lowering
it below one lets the short distances dominate, while exponents greater than one
expose the long distances. This lets us decide whether we want to spread the leaves
out, highlighting the structure in the leaves, or to collapse them, revealing the
connectivity in the interior of the graph.

In addition to parameters, we can make use of color and glyph groupings of the
nodes. We may subselect one group at a time for layout, or we may lay out the
groups simultaneously but as unconnected graphs. Or we may lay out a subgroup
and use it as an anchor set for laying out the remaining nodes.

There is also a diagnostic plot that permits us to judge how closely the pairwise
distances in the layout match the target distances.

3.3 Multiple edge sets

Sometimes one wants to compare different edge sets for the same set of nodes. In
the case of telephone calls, for instance, the extended community associated with a
phone number changes from week to week, with changes both in the set of phone
numbers in the community, and in the total length of the conversations between
any pair of nodes.

One strategy to compare these different edge sets is to start by determining a
layout based on the union of all nodes and the union all of edges. Since any of the
edge sets can be associated with the set of nodes used to determine the layout, it’s
easy to compare them: Open multiple scatterplots of the nodes in the graph view,
and assign a different edge set to each one. That technique could even be the basis
for an animation of edges and edge variables over time.

4 Graph exploration

Once the layout has been produced and the graph is displayed, a great deal of
exploration is possible without using any further plugins. Most of this functionality
depends on using linked views. As one would expect, nodes in the graph view are
linked to points in scatterplots of node variables, or to bars in a barchart; this is a
familiar style of linking. It is perhaps less obvious that an edge in the graph view
and a point in a scatterplot of edge variables are also linked: these are just different
ways of rendering the same record. Here are some of the manipulations available in
GGobi:

Move Points: In this mode, any point can be moved to manually tune the
layout. To move a group of points, one brushes them with a common glyph and
color; by moving any member of the group, one moves the whole group. Under
certain circumstances, point motion can be linked across plots of layouts, namely,
when the nodes are shared across graphs that differ only in edge sets and share a
single layout in separate windows.

Edit Edges: To edit the graph interactively, add nodes (by clicking the mouse
where you want the new node to appear) and edges (by pressing down the mouse

Proceedings of DSC 2003 7

Figure 2: An illustration of linked brushing with graphs. The nodes in the graph are linked to the
data in the scatterplot at the lower left; the edges to the data in the scatterplot at the lower right.

button at the source node and dragging the edge to the destination). To view or
modify the default properties (such as record label or variable values), use the left
button; to simply have the new record added quickly, use the right or middle button.
To delete nodes or edges, use “shadow” brushing as described below.

Identify: When the identification mode is active, bringing the cursor near a
point causes a label to be displayed, both in the current display and in other displays.
By default, this is the case label supplied in the data file (or the row number), but
it can also be a list of variable name - value pairs or an id. If edge identification is
selected, the nearest edge will be labelled instead of the nearest point.

Brushing (interactively): Linked brushing is probably the most familiar use
of linked views. In the case of graphs, it is probably clear by now that it can be
used in at least two ways. First, a plot of node data is linked to a graph view such
that brushing points in one plot causes the same points to change color or glyph
in the other. Second, a plot of edge data is linked to the graph view such that
brushing points in the edge data plot affects the edges in the graph view, and vice
versa. This latter functionality is an innovative feature of ggobi.

Proceedings of DSC 2003 8

One brushing style allows a point or an edge to be “shadow” brushed, so that
it’s drawn in a faint color and can later be removed from the displays altogether.

Fig. 2 shows linking between a radial layout of the snetwork.xml data and two
scatterplots. Two rectangular arrays of data are involved, one for the nodes and the
other for the edges. The window at the lower right contains a 1-D plot (an ASH,
or Average Shifted Histogram) of a transformation of one of the edge variables,
interactions. The highest values have been brushed with large green rectangles,
and the corresponding edges in the radial layout view are wide and green. All the
green edges are connected to a single node, which tells us that a single individual
participates in all of the longest interactions in the data. The window at the lower
left contains a jittered scatterplot of hours vs citizenship, the two variables recorded
for each person. The points representing the people with the highest values of the
citizenship variable (visa holders) have been brushed with large orange circles, and
the corresponding points are brushed in the graph view. A couple of subgraphs
contain no visa holders at all, and a couple of other subgraphs are dominated by
visa holders, but we also see a great deal of interaction between visa holders and
other people in the data. (Recall that the data is actually about telephone calls,
but that its meaning has been thoroughly obscured to protect customer privacy.)

The line characteristics (color, type and thickness) are implied when the point
characteristics (color, type and size) are specified in the Choose color & glyph panel.

One of the options available in the brushing mode is shadow brushing (Becker
and Cleveland, 1987); that is, to select points or edges to be drawn in a “shadow”
color, close to the color of the background. This is especially appealing for graph
visualization because clutter is often severe, yet we often don’t want to lose sight of
the graph structure when viewing a subset of the data. (Sometimes, of course, we
don’t want to draw those points at all, even as shadows, and then we exclude them
using the Color & glyph groups tool.)

Coloring by variables: Since interactive brushing of continuous variables can
be tedious, an automatic scheme is available as part of the Color schemes tool. In
the snetwork.xml data, one of the edge variables (interactions) is continuous, so we
can choose a sequential color scale and apply it to the “Contacts” edge set using
the interactions. (Since the distribution of that variable is highly skewed, we might
also apply a transformation first.)

Panning and Zooming: It is essential to be able to zoom in on interesting
regions of the graph view, and that functionality is available in GGobi’s scale mode.
(GGobi displays are not linked for scaling.)

All these methods are described in more detail in the GGobi manual, available
on www.ggobi.org.

4.1 The graph manipulation plugin

All of the interactive methods just listed are useful for multivariate data, not just
for graphs. In addition to those methods, we have added a plugin for methods of
exploration that are peculiar to graphs. It has two functions as of this writing, both
of them designed for focussing on contiguous subsets of the graph.

Proceedings of DSC 2003 9

The first function responds to a button click by shadow-brushing leaf nodes and
the edges connected to them recursively until no leaf nodes are highlighted. It can
be a useful way to quickly hide a lot of clutter in a a messy graph, and get a look
at the center.

The second is a method for focussing on a node and its nearest neighbors. It is
used in conjunction with the Identification mode in GGobi. Move the cursor near a
point of interest, and then click a mouse button. All points will be shadow brushed
with the exception of the nearest point and its neighbors within one or two steps.
In this way, one can walk around the graph, focussing on one small neighborhood
at a time.

5 Graphs in GGobi’s API

While GGobi is a stand–alone application, it has been designed and constructed as a
programming library and can be embedded within other applications. It has a large,
and still evolving, Application Programming Interface (API) which developers can
use to integrate the GGobi functionality with other code. For data analysts, GGobi
becomes much more powerful once it is embedded in a statistics environment with
an extension language.

Our most developed example is the Rggobi package, which allows GGobi to be
embedded in the R process. Users can then launch GGobi (using R data frames or
data files outside R), and then read and set data values and case attributes (such as
color and glyph), and even add event handlers which cause R to respond to GGobi
events. Edge sets can also be added, and the attributes of edges (color, line type
and line thickness) are handled exactly like point attributes.

In this first simple example, we create a matrix to represent the nodes, and open
it in ggobi. We next create an empty data set, dimensioned to hold six records.
Finally we create a 6×2 array to define the edges as 6 rows of source - destination
pairs, named in terms of the node labels, and add the edge set to the running ggobi.

x <- matrix(c(0,0,2,1, 0,2,0,1, 0,0,0,1), 4, 3,
dimnames = list(c("a", "b", "c", "d"), c("X", "Y", "Z")))

gg <- ggobi(x)

d2 <- gg$createEdgeData(6, name="edges")
e2 <- rbind(c("a","b"), c("b","c"), c("a","c"),

c("a","d"), c("b","d"), c("c","d"))
gg$setEdges(e2, edgeset = d2)

In the second example, we deal with a more complex case, in which there are
variables corresponding to the edges as well as to the nodes. We start again, using
the matrix x just described. Next we add a second dataset, 3x2, composed of the
data corresponding to the edges. Finally we add 3 edges to the second dataset.

gg <- ggobi(x)

Proceedings of DSC 2003 10

z <- matrix(c(1,2,1, 1,2,2), 3, 2,
dimnames = list(letters[10:12], c("X", "Y")))

d2 <- gg$setData(z, name="z")

e1 <- rbind(c("a", "b"), c("b", "c"), c("a", "d"))
gg$setEdges(e1, edgeset=gg[["z"]])

We plan to extend the API and the Rggobi package so that they can work with
other graph packages currently under development as part of the Bioconductor
project (www.bioconductor.org).

6 Data format: Specifying graphs in XML

GGobi relies on XML (the Extensible Markup Language) for everything beyond
the simplest of input data. The use of XML has allowed us to design a system of
mark-ups or tags that describe one or more datasets in great detail within a single
file, even specifying the relationships between records in different datasets.

We based GGobi’s XML format on a pre-existing XML format designed for the
Omegahat project (www.omegahat.org) and the S language (R and S-Plus). Some
of the information that can be specified in the GGobi XML file includes variable
types and axis ranges, the symbol and color corresponding to a record, and multiple
data sets and the rules for linking them.

GGobi’s XML format is described elsewhere (Temple Lang and Swayne, 2001),
so we will only explain here how the specification of data records is used to describe
graphs. A data record specification may be as simple as this:

<record> 1.0 2.5 </record>
<record> 1.7 2.2 </record>

This is a pair of records for a dataset with two variables. If we want to identify
these records as nodes, we must also give them unique ids. (Ids can also be used
for linking and identification, but that usage is described elsewhere.)

<record id="Macbeth"> 1.0 2.5 </record>
<record id="Banquo"> 1.7 2.2 </record>

If we want a set of edges to be drawn on a scatterplot or a graph view of these
nodes, we need a second dataset. If there is to be an edge from “Macbeth” to
“Banquo,” the second dataset must contain a record like this:

<record source="Macbeth" destination="Banquo"> </record>

If there are variables corresponding to that edge, they are specified within the
record, just as they are for nodes.

<record source="Macbeth" destination="Banquo"> 27 42 4.6 </record>

Proceedings of DSC 2003 11

As we implied in Section 3.3, it’s possible to specify more than one edge set
corresponding to the same node set within the same XML file, and that offers a
way to compare related edge sets.

There are graph specification languages in XML under development, and we
expect it will be easy to translate between those formats and GGobi’s, though
those other languages probably won’t fully support multivariate data.

For the interested reader, the GGobi distribution includes several graph datasets
in XML. Some include position variables so that additional layout isn’t required:
buckyball.xml and cube6.xml describe geometric objects, with no additional vari-
ables. Another, snetwork.xml, is fully multivariate and does not include variables
that can be used for displaying the graph; that is the dataset that served as an
example throughout this paper.

7 Conclusions

As more statisticians become interested in graph data analysis, they approach this
area with the expectations and expertise acquired in working with general multi-
variate data. They expect first of all to be able to work in environments like R, with
a set of algorithms, a variety of static display methods, and a scripting language.
This set of goals is being pursued in the Bioconductor project and elsewhere.

Second, statisticians and other data anlysts who have come to rely on direct
manipulation graphical methods will want to use them with this form of data as
well: to quickly update plots, changing variables and projection, to pan and zoom
displays, and to use linked views to explore the graph and the distribution of multi-
variate data in the graph. GGobi’s data format supports describing the graph and
the data together, and its architecture allows the addition of plugins, so it’s natural
to extend GGobi, applying all its functionality to graph data.

Finally, we want to integrate the direct manipulation graphics, algorithms and
scripting language so that we can use them all together. This expectation is not yet
as automatic as the first two: People often still imagine building a single monolithic
application that can do everything. As the example of graph data shows, however,
there are many specialized problems that are often overlooked, so no monolithic
piece of software can satisfy the needs of all users. If instead it’s possible to integrate
complementary software tools, and to extend them with plugins and packages, then
even the most unusual cases can be handled without too much trouble.

The GGobi software and documentation, including several plugins and the Rggobi
package, are available on the web site www.ggobi.org.

References

Batagelj, V., Mrvar, A., 1998. Pajek - program for large network analysis. Connec-
tions 21, 47–57.

Battista, G. D., Eades, P., Tamassia, R., Tollis, I., 1994. Annotated bibliography on

Proceedings of DSC 2003 12

graph drawing algorithms. Computational Geometry: Theory and Applications
4, 235–282.

Becker, R. A., Cleveland, W. S., 1987. Brushing scatterplots. Technometrics 29,
127–142.

Gansner, E. R., North, S. C., 2000. An open graph visualization system and its
applications to software engineering. Software – Practice and Experience 30 (11),
1203–1233.

Ihaka, R., Gentleman, R., 1996. R: A language for data analysis and graphics.
Journal of Computational and Graphical Statistics 5, 299–314.

Swayne, D. F., Cook, D., Buja, A., 1998. XGobi: Interactive dynamic data vi-
sualization in the X Window System. Journal of Computational and Graphical
Statistics 7 (1), 113–130.

Swayne, D. F., Temple Lang, D., Buja, A., Cook, D., 2003 (to appear). GGobi:
Evolving from XGobi into an extensible framework for interactive data visualiza-
tion. Journal of Computational Statistics and Data Analysis .

Temple Lang, D., Swayne, D. F., 2001. The ggobi XML input format.
www.ggobi.org.

Wills, G., 1999. NicheWorks – interactive visualization of very large graphs. Journal
of Computational and Graphical Statistics 8 (2), 190–212.

	Introduction
	GGobi
	Graph layout
	The graph layout plugin
	The ggvis plugin: multidimensional scaling
	Multiple edge sets

	Graph exploration
	The graph manipulation plugin

	Graphs in GGobi's API
	Data format: Specifying graphs in XML
	Conclusions

